Study on retail fish markets: Possible occurrence and transmission of emerging pathogen from faecal indicators

Abstract

Aim: Most of the Indian consumers hitherto in-vogue prefer to procure the fish in retail markets despite of its poor unhygienic condition. Hence, multi-year environmental study was carried out to scrutinize the hygienic status by faecal indicator estimation in retail markets of Navi Mumbai region.

Methodology: In total, 159 marine fish were collected and analysed for estimation of aerobic plate count and faecal indicator bacteria viz., E. coli, faecal streptococci and sulphite reducing clostridia.

Results: Aerobic plate counts of all fish were within the limit; but the level of E. coli was higher in retail fish i.e., 22.4%. The average level of E. coli, faecal streptococci and sulphite reducing clostridia were 14, 31, 15 cfu g⁻¹, respectively. Higher ratio was observed between the faecal streptococci and E. coli i.e., 1:0.45.

Interpretation: Fish in retail markets harbour noteworthy number of faecal indicator bacteria which indicates considerable number of faecal contamination and poor hygienic status of the retail market. Repeated use of same water for washing fish may be reason for the elevated level of contamination. So, cleaning of fish with potable water may reduce contamination. In addition, these retail markets need to be monitored by the controlling authority at regular intervals with stringent control policy in order to provide safe seafood.

Authors Info

S. Visnuvinayagam*, L.N. Murthy¹, PViji² and G.K. Sivaraman*¹
¹Microbiology Division, Mumbai Research Centre of CIFT, Vashi-400 703, India
²Fish Processing Division, Mumbai Research Centre of CIFT, Vashi-400 703, India
³Fish Processing Division, Vishakhapatnam Research Centre of CIFT, Vishakhapatnam, Andra Pradesh-530 003, India
⁴Microbiology Division, Veraval Research Centre of CIFT, Vashi, Veraval-362 289, India

*Corresponding Author Email : visnuvinayagam@yahoo.co.in

Key words

E. coli, Faecal indicators, Faecal streptococci, Sulphite reducing clostridia

Publication Info

Paper received : 09.02.2016
Revised received : 23.10.2016
Re-revised received : 27.10.2016
Accepted : 09.11.2016
Introduction

Faecal indicator bacteria are index organisms that generally exist as commensal in the intestine of warm blooded animal; but, not in fish (Huss, 1994). Hence, the presence of these indicators in fish show definite faecal contamination (Kulshreshta and Sharma, 2006; Sharma and Chaturvedi, 2007). E. coli, faecal streptococci and Sulphite reducing clostridia are considered as important indicators for assessment of faecal contamination (Tyagi et al., 2006). Presence of mere faecal indicator bacteria in fish is not directly connected with pathogenic bacteria; but, there is high chance of occurrence of pathogenic bacteria in water bodies. Hence, existence of these faecal indicator bacteria in fish needs to be considered very critically to control the waterborne pathogenic bacteria/virus/parasitic oocyst contamination in fish (Ashbolt et al., 2001).

E. coli is a primary indicator for faecal contamination; abundant in warm blood animal faeces. So, *E. coli* is considered as a sole indicator for faecal contamination (Tallon et al., 2005). But, it exists in environment for short period and rapidly destroyed while freezing the food materials (Huss, 1994). Another group of faecal indicator bacteria viz. faecal streptococci is being used to monitor the potable water resources (EC, 1998; Krishnan et al. 2007). It has better survivability in environment and in freezing temperature thus make the bacteria can stay longer period in environment than *E. coli* (Huss, 1994). Around 84% of sewage contaminated polluted water sources contain faecal streptococci; hence, it is considered as true faecal indicators. The term faecal streptococci and Enterococci are used alternatively because Enterococci are considered as sub set of faecal streptococci. Recent report says that these faecal streptococci are not only an indicator bacteria but also a pathogenic bacteria i.e., *Enterococcus faecalis* and *Enterococcus faecium* are responsible for endocarditis, intra-abdominal infection, surgical wound infection and urinary tract infections in human (Ross, 1998; Barrell et al., 2000). It has also been recorded that *E. faecalis* and *E. faecium* are regularly isolated from cheese, fish, sausages, minced beef and pork (Foulquie et al., 2006; Klein, 2003). *E. faecalis* and *E. faecium* are the most prevalent species isolated from humans clinical cases. *E. faecium* is responsible for most Vancomycin-Resistant Enterococci infections.

Sulphite reducing clostridia are group of bacteria that reduce sulphate to sulphite; presence of these sulphite reducing clostridia in water resources indicate the remote faecal contamination. Since sulphite reducing clostridia spores are highly resistance in nature and withstand sanitation, it is used to evaluate the virus, cyst inactivation and to assess the effect of sanitization in drinking water disinfection processes (WHO, 1996; Borrego et al., 2002).

In the past year, faecal streptococci are considered as an indicator for faecal contamination; but, recent research report from hospitals are frequently associated with the faecal streptococci as a prime pathogenic responsible of urinary infection and other critical diseases. Since, fish are handled by various persons, it has been found that a considerable number of faecal streptococci in fish and elevated level of faecal streptococci in some of the fish and shell fish. But, permissible limits/standards have not yet been defined by Food Control Authority in India, as well as international for faecal streptococci. In case of other faecal indicators such as *E. coli* and *C. perfringens*, permissible limit has been defined by Indian Food Control Authority i.e., 20 cfu g⁻¹ and absence in 25 g³ respectively (FSSAI 2012). Considering the emergence of pathogenic Faecal streptococci, in the present study Faecal streptococci and other Faecal Indicator Bacteria were investigated in marine fish and shell fish, available in retail markets with reference to different species, and discussing about the possible source of contamination and prevention. Since, most of the Indian consumers prefer local retail outlet for the procurement of fish, the present study mainly focused on the local retail markets.

Materials and Methods

Fish sample from retail fishery market: In total, 159 marine water fish were collected randomly, based on the availability of the fish in different fish markets (Table 1) in a sterile polythene bags with ice and brought to laboratory within four hours. Name of the collected fish and shell fish are as follows Chirocentrus dorab, Johnius dussumieri, Epinephelus sp., Congresox talabonoides, Tylosorus crocodilus, Parastromateus niger, Lates calcarifer, Rastrelliger kanagurta, Mugil cephalus, Sillago sihama, Nemipterus japonicus, Eleutheronema tetradytum, Dasyatis sp., Sardinella longiceps, Scomboromorus sp., Penaeus sp., Pampus argenteus, Cynoglossus sp., Loligo duvauceli.

Aerobic plate count: Twenty five grams of fish sample was aseptically taken from upper part of the fish and transferred to 225 ml of 0.1% peptone saline; the fish meat was then blended in a stomacher (Seaward, UK) for 2 min. The blended material was serially diluted upto 10⁶ dilution; then, 0.5 ml of sample was transferred to Tryptone Glucose Beef Extract agar (Hi Media, #M791) plates and spread over the surface and incubated at 35 °C for 2 days for aerobic plate count enumeration (APHA, 2015).

Escherichia coli: Enumeration of *E. coli* was carried out by ISO, 9308-1 (ISO, 1990) with slight modification i.e., 0.5 ml of serially diluted fish sample was transferred to Modified Tergitol-7 (Hi Media, #M6161) plates supplemented with 0.25 ml of 1% Triphenyl Tetrazolium Chloride (Himedia, FD057) and spread over the surface; then, all the plates were incubated at 35 °C for 24 hrs. Flat dry yellow colonies with red tinge were further streaked over eosin methylene blue agar plates; after incubation, colonies showing greenish metallic sheen were further subjected to IMViC for further confirmation (ISO, 1990).
Faecal streptococci: The faecal streptococci were enumerated, based on the pour plated method. One ml of dilute sample from each test tube was transferred to sterile empty petri plates. Then Kenner faecal (KF) streptococcal agar base (HI Media, #M248) was boiled and cooled to 48°C then supplemented with 1ml of 1% of 2,3,5-triphenyl-2H-tetrazolium chloride (FD057). Finally, agar medium was poured in petri plate containing 1 ml of diluted fish meat and rotated firmly for uniform mixing. After the plates were dried, 5ml of KF agar medium was overlaid on the surface of each plate and allowed to dry in room temperature. All the plates were then incubated at 35°C for 48 hrs. Brown colonies surrounded by a halo zone subjected to biochemical test for further confirmation (APHA, 2015; Sugumar et al., 2008).

Sulphite reducing clostridia: Sulphite reducing clostridia numbers were determined by a three tube MPN technique using Differential Reinforced Clostridial Broth (DRCB) (M549, Himedia). All black colour tubes were confirmed by streaking on to Tryptose Sulphite Cycloserine (TSC) agar and the characteristic colonies were again confirmed by biochemical reactions as described by Collee et al. (1996).

Results and Discussion

Aerobic plate count for the collected samples were below 5,00,000 cfu g⁻¹ and ranged between 2,000 – 4,00,000 cfu g⁻¹. But, 22.64% of fish samples harboured higher level of *E. coli* i.e., more than the recommended level (20 cfu g⁻¹); an average of 14.62 cfu g⁻¹ of *E. coli* was noticed in the fish of retail fish market. Higher level of *E. coli* (56.67 cfu g⁻¹) and sulphite reducing clostridia (51.67 cfu g⁻¹) was noticed in Shrimp species (*Penaeus sp*). Higher level of faecal streptococci (60 cfu g⁻¹) was noticed in seab fish. Average of 31.93 and 15.80 cfu g⁻¹ was observed for the faecal streptococci and sulphite reducing clostridia respectively (Table 1).

Correlation coefficient was used in the study to assess the impact of faecal indicator on aerobic plate count using Excel, Window 7 and it was found that there is no significant correlation was observed between aerobic plate count and faecal indicator bacteria (Table 2). The ratio between the faecal streptococci and *E. coli* was 1:0.45.

Aerobic plate count is a prime indicator of food spoilage; even though aerobic plate counts are not hazardous to human, it indicates the level of spoilage. As per Indian and International standard, the limitation for aerobic plate count in fish was 5,00,000 cfu g⁻¹ (FSSAI, 2012; IS, 1978; ICMSF, 1986). In the present study, the aerobic plate count level of all the collected samples were within 5,00,000 cfu g⁻¹ the reason may be that fishes are procured on the basis of freshness index such as color, appearance and firmness.

Even though, aerobic plate count was within the limit, there is a huge possibility of presence of hazardous microorganism in the fish. Because, most of the fish were exposed to contamination while handling/processing. Indian Food Control Authority has given clear guidelines such as the fish sample should not have *E. coli* higher than 20 cfu g⁻¹. In the present investigation among 159 samples, 36 samples consisted of higher *E. coli* i.e., 22.64% of the samples had higher *E. coli* count than the recommended level. Among the collected seafood, shrimp species were highly contaminated (Table 1), which might be due to the use of contaminated water in the fish market, and led to the accumulation of *E. coli* between the shrimp shell and the body, thus increase the contamination. On an average around 14 cfu g⁻¹ of *E. coli* were present in the fish of retail market, which indicates a considerable number of faecal contaminations were observed in the retail markets.

Even though, faecal streptococci are the important indicator, there is no international limit in fish/ meat. But, European council recommended level of for *Enterococcus sp.* (sub set of faecal streptococci) in potable water is 0/250 ml (EC, 1998); but for food or fish. In India, Bureau of Indian Standard (BIS) recommends that level of faecal streptococci should not exceed 100 cfu g⁻¹ of fish (IS: 4780 – 1978). So, as per Indian standard IS-4780- 1978 (IS, 1978) in the present investigation two samples were exceeding the recommended limit of faecal streptococci i.e., 100cfu g⁻¹ (IS: 4780 – 1978). In India, implementing and monitoring authority viz., Food safety standards authority of India (FSSAI) has not mentioned the faecal streptococci level in fish. Recent dreadful report suggested that, the Enterococcus species viz. *E. faecalis* and *E. faecium* are responsible for endocarditis, intra-abdominal infection, surgical wound infection, and urinary tract infections, endocarditis and meningitis in humans (Ross, 1998; Barrell et al., 2000). *E. faecalis* recorded as a main cause of life-threatening infections in humans, especially in the nosocomial (hospital) environment with high levels of antibiotic resistance (Ryan and Ray, 2004). Around 30% to 90% of root canal-treated teeth are infected with *E. faecalis*. About nine times increase in recurrence of *E. faecalis* as a secondary infection in root canal infection than primary infections (Molander et al., 1998; Rocas et al., 2004). Vancomycin resistant Enterococci i.e., *E. faecalis* is an emerging problem in worldwide in the hospital, it is resistant to most commonly used antibiotics (Amyes et al., 2007).

Presence of *E. faecalis* in fish can be transferred to the handlers during handling process. In addition, these faecal streptococci are heat resistant and it can withstand pasteurization, temperature, it may survives in partial cooking and it will not be affected by ingestion (Sorensen et al., 2001); thus makes the bacteria to spread easily to handlers and consumers. So, proper and hygienic handling is needed for fish handlers and consumers; because, the present study confirms the presence of noteworthy numbers of faecal streptococci in retail fish markets i.e., average of 31 cfu g⁻¹ of faecal streptococci was observed in
Table 1: Microbiological parameters of different fish and its average and range

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Marathi name</th>
<th>No. of samples</th>
<th>APC/g</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avg.</td>
<td>Range</td>
<td>Avg.</td>
<td>Range</td>
<td>Avg.</td>
<td>Range</td>
</tr>
<tr>
<td>E. coli/g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arius arius</td>
<td>Catfish/Thread fin sea catfish</td>
<td>Shingala</td>
<td>9</td>
<td>12452.22</td>
<td>25000-44000</td>
<td>4.44</td>
<td>0-40</td>
<td>33.11</td>
<td>0-100</td>
</tr>
<tr>
<td>Chirocentrus dorab</td>
<td>Silver bar/ Karli/ Datali</td>
<td>Dorab wolf-herring</td>
<td>19</td>
<td>84765.79</td>
<td>47000-218750</td>
<td>13.00</td>
<td>0-80</td>
<td>27.71</td>
<td>0-60</td>
</tr>
<tr>
<td>Johnius dussumieri</td>
<td>Croaker</td>
<td>Dhoma/Dhomi</td>
<td>4</td>
<td>48250.00</td>
<td>6000-73000</td>
<td>10.00</td>
<td>0-20</td>
<td>18.00</td>
<td>10-40</td>
</tr>
<tr>
<td>Epinephelus sp.</td>
<td>Grouper</td>
<td>Hekru/Gobra</td>
<td>2</td>
<td>119000.00</td>
<td>78000-160000</td>
<td>40.00</td>
<td>14-60</td>
<td>40.00</td>
<td>20-60</td>
</tr>
<tr>
<td>Congresox talabonoides</td>
<td>Conger eel</td>
<td>War</td>
<td>2</td>
<td>131000.00</td>
<td>92000-170000</td>
<td>9.60</td>
<td>0-20</td>
<td>13.43</td>
<td>0-20</td>
</tr>
<tr>
<td>Tylosurus crocodilus</td>
<td>Hound needle fish</td>
<td>Tolki</td>
<td>5</td>
<td>64680.00</td>
<td>52900-81000</td>
<td>6.00</td>
<td>0-20</td>
<td>13.43</td>
<td>0-20</td>
</tr>
<tr>
<td>Parastromateus niger</td>
<td>Black pomfret</td>
<td>Halwa</td>
<td>7</td>
<td>63457.14</td>
<td>28000-95000</td>
<td>7.14</td>
<td>0-20</td>
<td>10.00</td>
<td>0-20</td>
</tr>
<tr>
<td>Lates calcarfer</td>
<td>Asian seabass</td>
<td>Jadada</td>
<td>2</td>
<td>65100.00</td>
<td>37200-93000</td>
<td>25.00</td>
<td>0-50</td>
<td>30.00</td>
<td>0-50</td>
</tr>
<tr>
<td>Rastrelliger kanagurta</td>
<td>Indian mackerel</td>
<td>Bangada</td>
<td>6</td>
<td>98000.00</td>
<td>4000-217000</td>
<td>10.00</td>
<td>0-20</td>
<td>33.64</td>
<td>0-80</td>
</tr>
<tr>
<td>Mugil cephalus</td>
<td>Grey mullet</td>
<td>Boita</td>
<td>11</td>
<td>43940.91</td>
<td>2700-71000</td>
<td>20.91</td>
<td>0-60</td>
<td>6.34</td>
<td>0-10</td>
</tr>
<tr>
<td>Sillago sihama</td>
<td>Indian whiting</td>
<td>Murdu / Renvi</td>
<td>3</td>
<td>106900.00</td>
<td>85000-125700</td>
<td>10.00</td>
<td>0-30</td>
<td>24.06</td>
<td>0-60</td>
</tr>
<tr>
<td>Nemipterus japonicus</td>
<td>Pink perch</td>
<td>Rani</td>
<td>17</td>
<td>82029.41</td>
<td>37000-200000</td>
<td>16.59</td>
<td>0-40</td>
<td>45.83</td>
<td>0-110</td>
</tr>
<tr>
<td>Eleutheronema</td>
<td>Indian Salmon</td>
<td>Rawas</td>
<td>12</td>
<td>135437.50</td>
<td>56000-37000</td>
<td>17.42</td>
<td>0-40</td>
<td>35.86</td>
<td>0-100</td>
</tr>
<tr>
<td>Mean±SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean±SE: 14.62±1.43 31.93±2.22 15.80±2.29
Occurrence of faecal indicators in marine fish

the retail fish markets. Since, *E. faecalis* is major concern in the Enterococcus genus; enumeration of *F. faecalis* will be sufficient instead the enumeration of total Enterococcus/faecal streptococci in fish.

Sulphite reducing clostridia are the group of Clostridia includes mainly *Clostridium perfringens*, *C. bifermentans*, *C. difficile*, *C. sporogenes*, *C. botulinum* and *C. septicum* (Kouassi et al., 2011). Among the group, *C. perfringens* is a key species and commonly found in human and animal intestine. Since, *C. perfringens* is specific and more pathogenic, recent EC directive has amended the regulation *i.e.*, *C. perfringens* has to be analysed in place of sulphite reducing clostridia. Previous EC directive recommended that the level of sulphite reducing clostridia should be absent in 20 ml of potable water; but the recent 98/83/EC Directives recommend absence of *C. perfringens* in 100 ml of potable water (Barrel et al., 2000). In the present study shows that among the 159 sample 154 samples contained sulphite reducing clostridia (Table 1); hence, there is huge possibility of *C. perfringens* in most of the samples; thus attributes that most of the fishes are contaminated with faecal materials. Since, sulphite reducing clostridia can withstand the cooking temperature and other food processing techniques, most of the fish still carry the sulphite reducing clostridia even after cooking/processing or any other preservation method. Hence, the hygienic handling practices have to be followed to avoid the sulphite reducing clostridia/*C. perfringens* in seafood.

In the present investigation, twenty different types of fish and shell fish were evaluated for presence of faecal indicator bacteria (Table 1). The outcome, shrimps samples were harbouring elevated level of *E. coli* and sulphite reducing clostridia. The reason for the elevated level of *E. coli* and sulphite reducing clostridia in shrimp may due to either contamination in pond (brackish water) or repeated use of contaminated water for cleaning of shrimps in the retail market. The unique feature of shrimp exoskeleton; especially the below the exoskeleton may entrap most of the contaminant, thus favours the high level of *E. coli* or sulphite reducing clostridia in shrimp. Eventough fishes encounter the same contaminated water; it may not accumulate as like shrimp. So, results suggest that most of the shrimps samples are highly prone for faecal contamination. In case of seer fish higher number of faecal streptococci with completely devoid of *E. coli*. Perhaps, seer fishes are more in demand and fetch higher cost in the retail markets; transported/retailer might have stored in the fish below the freeezing point to retain the better quality of fish. The below freezing temperature might have destroyed the *E. coli*. Similarly, the costly/high demand fishes viz. black pomfret and silver pomfret had lower level of *E. coli*.

Butniaux and Mossel (1961) reported that per gram of faecal matter contains 4×10^2 coliform, 4×10^3 of *E. coli* and 4×10^4 Enterococcus sp. Hence, presence of 10 number of *E. coli* in the food is equal to contamination by 2.5 g faecal materials in fish. They also observed that ratio between the Enterococcus with *E. coli* is 1:0.1. But, in the present study faecal streptococci with *E. coli* ratio was 1: 0.45 i.e., very high level of *E. coli* in fish samples, which is possible due to multiplication of *E. coli* in fish samples. So, the present study clearly indicates that the marine fish samples favour the multiplication of the *E. coli*.

Since marine environment is free of faecal indicator bacteria, most of the contamination take place in post-harvest handling (Visnunayagam et al., 2015a; 2015b; Sivaraman et al., 2016a; 2016b; Murugadas et al., 2016), these contaminations starts from the un-cleaned fish storage tank, contaminated water used for cleaning of the fish in harbours and retail market. Repeated use of same water for cleaning of the fish in retail market would play a major factor responsible of the contamination of fish (Visnuvinayagam et al., 2015b). Correlation co-efficient was carried out between aerobic plate count and within faecal indicator bacteria (Table 2); the study found that there is very poor correlation was observed between the aerobic plate count and faecal indicator bacteria *i.e.*, 0.07 to 0.25. Similarly poor correlation was observed between the faecal indicator bacteria *i.e.*, 0.07 to 022, which may due to that the distribution of the faecal indicator bacteria in the fish flesh/surface may not be uniform and multiplication of faecal indicator in fish. High level of *E. coli* and sulphite reducing clostridia in the shrimp species, high number of faecal streptococci with absence of *E. coli* seer in the present investigation is need to be confirmed by analysing more number of samples.

It is concluded that 22.4% of the fish available in the fish market are unfit for human contamination due to excess level of *E. coli* in the fishes. Contamination can be reduced by providing a potable water to clean the fish to remove the surface adhered bacteria and retail markets need to be monitored by the controlling authority at regular interval with stringent control policy to sell safe seafood. So, fish handlers should aware of good hygienic handling practices of seafood.

Acknowledgments
The microbiological work carried out by Thriveni G. Adiga, Assistant Chief Technical officer of Mumbai Research Centre of CIFT is thankfully acknowledged. The author also thank the Director, ICAR-CIFT, Cochin for funding the project.

Table 2: Correlation between APC, S. aureus and Faecal indicators

<table>
<thead>
<tr>
<th>Indicator bacteria</th>
<th>APC</th>
<th>E. coli</th>
<th>FS</th>
<th>SRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>0.065914</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>0.212045</td>
<td>0.228605</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td>0.253649</td>
<td>0.124246</td>
<td>0.076177</td>
<td>1</td>
</tr>
</tbody>
</table>

Journal of Environmental Biology, May 2017
References

