DSpace Repository

Salmonella grows vigorously on seafood and expresses its virulence and stress genes at different temperature exposure

Show simple item record

dc.contributor.author Rakesh, K.
dc.contributor.author Datta, T. K.
dc.contributor.author Lalitha, K.V.
dc.date.accessioned 2016-10-27T05:40:05Z
dc.date.available 2016-10-27T05:40:05Z
dc.date.issued 2015
dc.identifier.citation BMC Microbiology (2015) 15:254 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2347
dc.description.abstract Seafood is not considered the natural habitat of Salmonella except the river fish, but still, the incidence of Salmonella in seafood is in a steady rise. By extending our understanding of Salmonella growth dynamics and pathogenomics in seafood, we may able to improve seafood safety and offer better strategies to protect the public health. The current study was thus aimed to assess the growth and multiplication of non-typhoidal and typhoidal Salmonella serovars on seafood and further sought to evaluate their virulence and stress genes expression while in contact with seafood at varying temperature exposure. Salmonella enterica Weltevreden and Salmonella enterica Typhi were left to grow on fish fillets at −20, 4, room temperature (RT) and 45 °C for a period of one week. Total RNA from both Salmonella serovars were extracted and qRT-PCR based relative gene expression approach was used to detect the expression of rpoE, invA, stn and fimA genes at four different temperature conditions studied on incubation days 0, 1, 3, 5 and 7. Salmonella Weltevreden growth on seafood was increased ~4 log10 at RT and 45 °C, nevertheless, nearly 2 and >4 log 10 reduction was observed in cell count stored at 4 and −20 °C on seafood, respectively. Growth pattern of Salmonella Typhi in seafood has shown identical pattern at RT and 45 °C, however, growth was sharply reduced at 4 and −20 °C as compared to the Salmonella Weltevreden. Total RNA of Salmonella Weltevreden was in the range from 1.3 to 17.6 μg/μl and maximum concentration was obtained at 45 °C on day 3. Similarly, RNA concentration of Salmonella Typhi was ranged from 1.2 to 11.8 μg/μl and maximum concentration was obtained at 45 °C on day 3. The study highlighted that expression of invA and stn genes of Salmonella Weltevreden was >8-fold upregulated at RT, whereas, fimA gene was increasingly down regulated at room temperature. Storage of Salmonella Weltevreden at 45 °C on seafood resulted in an increased expression (>13 -fold) of stn genes on day 1 followed by down regulation on days 3, 5, and 7. Nevertheless, other genes i.e. fimA, invA and rpo remained downregulated throughout the storage period. More intense upregulation was observed for invA and stn genes of Salmonella Typhi at RT and 45 °C. Further, incubating Salmonella Weltevreden at 4 °C resulted in down regulation in the expression of rpoE, invA and stn genes. Regarding Salmonella Typhi, fimA and stn genes were upregulated on day one, in addition, an increased expression of fimA was noted on day 3. At −20 °C, there was no obvious expression of target genes of Salmonella Weltevreden and Salmonella Typhi when stored along with seafood. Here we demonstrate that nutritional constituents and water content available in seafood has become useful growth ingredients for the proliferation of Salmonella in a temperature dependent manner. Although, it was absence of serovar specific growth pattern of non-typhoidal and typhoidal Salmonella in seafood, there was observation of diverse expression profile of stress and virulent genes in non-typhoidal and typhoidal Salmonella serovars. In presence of seafood, the induced expression of Salmonella virulent genes at ambient temperature is most likely to be impacted by increased risk of seafood borne illness associated with Salmonella. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.subject Salmonella en_US
dc.subject Seafood en_US
dc.subject Virulence factor en_US
dc.subject Stress en_US
dc.subject Gene expression qRT-PCR en_US
dc.title Salmonella grows vigorously on seafood and expresses its virulence and stress genes at different temperature exposure en_US
dc.type Article en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Request Article


My Account